Nothomyrmecia, also known as the dinosaur ant or dawn ant, is an extremely rare genus of consisting of a single species, Nothomyrmecia macrops. These ants live in South Australia, nesting in old-growth mallee woodland and Eucalyptus woodland. The full distribution of Nothomyrmecia has never been assessed, and it is unknown how widespread the species truly is; its potential range may be wider if it does favour old-growth mallee woodland. Possible threats to its survival include habitat destruction and climate change. Nothomyrmecia is most active when it is cold because workers encounter fewer competitors and predators such as carpenter ant and Iridomyrmex, and it also increases hunting success. Thus, the increase of temperature may prevent them from foraging and very few areas would be suitable for the ant to live in. As a result, the IUCN lists the ant as Critically Endangered.
As a medium-sized ant, Nothomyrmecia measures . Workers are monomorphic, showing little morphological differentiation among one another. Mature colonies are very small, with only 50 to 100 individuals in each nest. Workers are strictly nocturnality and are solitary foragers, collecting arthropod prey and sweet substances such as honeydew from and other Hemiptera. They rely on their vision to navigate and there is no evidence to suggest that the species use chemicals to communicate when foraging, but they do use chemical alarm signals. A queen ant will mate with one or more males and, during colony foundation, she will hunt for food until the brood have fully developed. Queens are Voltinism (they produce just one generation of ants each year). Two queens may establish a colony together, but only one will remain once the first generation of workers has been reared.
Nothomyrmecia was first described by Australian entomologist John S. Clark in 1934 from two specimens of worker ants. These were reportedly collected in 1931 near the Russell Range, inland from Israelite Bay in Western Australia. After its initial discovery, the ant was not seen again for four decades until a group of entomologists rediscovered it in 1977, away from the original reported site. Dubbed as the 'Holy Grail' of myrmecology, the ant was subject to great scientific interest after its rediscovery, attracting scientists from around the world. In Poochera (the rediscovery site), pictures of the ant are stencilled on the streets, and it is perhaps the only town in the world that thrives off ant-based tourism. Some entomologists have suggested a relationship to the Baltic amber ant genus Prionomyrmex based on morphological similarities, but this interpretation is not widely accepted by the entomological community. Owing to its body structure, Nothomyrmecia is regarded to be the most plesiomorphic ant alive and a 'living fossil', stimulating studies on its morphology, behaviour, ecology, and chromosomes.
A long and retractable stinger is present at the rear of the abdomen. It has been described as "prominent and effective" and is capable of inflicting a painful sting to humans. A 'sting bulb gland' is also present in Nothomyrmecia; this is a small exocrine gland of unknown function, first discovered and named in 1990. It is situated in the basal part of the insect's sting, and is located between the two ducts of the venom gland and the Dufour's gland. Despite its many plesiomorphic features, the sting apparatus of Nothomyrmecia is considered less primitive than those found in other ants such as Stigmatomma pallipes. It is the only known species of ant that contains both a sting and a 'waist' (i.e. it has no postpetiole between the first and second gastral segments).
Queens look similar to workers, but several morphological features distinguish the two castes from each other. The queen's body is usually larger. Ocelli are highly developed, but the eyes on the queen are not enlarged. The structure of the pterothorax (the wing-bearing area of the thorax) is consistent with other reproductive ants, but it does not occupy as much of its mesosomal bulk. The wings of the queens are rudimentary and stubby, barely overlapping the first gastral segment, and are Brachyptery (non-functional). Males resemble those of Myrmecia, but Nothomyrmecia males bear a single waist node. The wings on the male ant are not stubby like a queen's; rather they are long and fully developed, exhibiting a primitive . They have a jugal anal lobe (a portion of the hindwing), a feature found in many primitive ants, and basal hamuli (hook-like projections that link the forewings and hindwings). Most male specimens collected have two tibial spurs (spines located on the distal end of the tibia); the first spur is a long calcar and the second spur is short and thick. Adults have a Stridulation organ on the ventral side of the abdomen – unlike all other in which such organs are located dorsally.
In all castes, these ants have six maxillary Pedipalp (palps that serve as organs of touch and taste in feeding) and four labial palps (sensory structures on the labium), a highly primitive feature. The females have a 12-segmented antenna, whereas males have 13 segments. Other features include paired calcariae found on both the hind and middle tibiae, and the claws have a median tooth. The unspecialised nature of the cuticle (outer exoskeleton of the body) is similar to Pseudomyrmex, a member of the subfamily Pseudomyrmecinae. Many of the features known in Nothomyrmecia are found in Ponerinae and Pseudomyrmecinae.
The eggs of Nothomyrmecia are similar to those of Myrmecia, being subspherical and non-adhesive. The larvae bear a primitive body structure with no specialised , sharing similar characteristics with the subfamily Ponerinae, but the Sensillum are more abundant on the mouthparts. The larvae are characterised into three stages: very young, young, and mature, measuring , and , respectively. The cocoons have thin walls and produce meconium (a metabolic waste product expelled through the anal opening after an insect emerges from its pupal stage). The cuticular have internally branched alkenes, a feature rarely found in ants and most insects.
In general, the body structure of all Nothomyrmecia castes demonstrates the primitive nature of the species. Notable Synapomorphy include vestigial ocelli on workers, brachypterous queens, and the Mesothorax on males. The morphology of the abdomen, mandibles, gonoforceps (a sclerite, serving as the base of the sheath) and basal hamuli show it is more primitive than Myrmecia. The structure of the abdominal region can separate it from other Myrmeciinae relatives (the fourth abdominal segment of Myrmecia is tubulate, whereas Nothomyrmecia has a non-tubulated abdominal segment). The appearance of the fourth abdominal segment is consistent with almost all Aculeata insects, and possibly Sphecomyrma.
The feature of non-functional, vestigial wings may have evolved in this species relatively recently, as wings might otherwise have long-since disappeared completely had they no function for dispersal. Wing-reduction could somehow relate to population structure or some other specialised ecological pressure. Equally, wing-reduction might be a feature that only forms in drought-stressed colonies, as has been observed in several Monomorium ant species found throughout semi-arid regions of Australia. As yet, scientists do not fully understand how the feature of non-functional, vestigial wings arose in Nothomyrmecia macrops.
In 2000, entomologist Cesare Baroni Urbani described a new Baltic fossil Prionomyrmex species ( P. janzeni). After examining specimens of Nothomyrmecia, Baroni Urbani stated that his new species and N. macrops were so morphologically similar that they belonged to the same genus. He proposed that the name Prionomyrmex should replace the name Nothomyrmecia (which would then be just a synonym), and also that the subfamily Nothomyrmeciinae should be called Prionomyrmeciinae.
In 2003, Russian palaeoentomologists G. M. Dlussky and E. B. Perfilieva separated Nothomyrmecia from Prionomyrmex on the basis of the fusion of an abdominal segment. In the same year, American entomologists P. S. Ward and S. G. Brady reached the same conclusion as Dlussky and Perfilieva and provided strong support for the monophyly of Prionomyrmex. Ward and Brady also transferred both taxa as distinct genera in the older subfamily Myrmeciinae under the tribe Prionomyrmecini. In 2005 and 2008, Baroni Urbani suggested further evidence in favour of his former interpretation as opposed to Ward and Brady's. This view is not supported in subsequent relevant papers, which continue to use the classification of Ward and Brady, rejecting that of Baroni Urbani.
The ant is commonly known as the dinosaur ant, dawn ant, or living fossil ant because of its plesiomorphic body structure. The generic name Nothomyrmecia means "false bulldog ant". Its specific epithet, macrops ("big eyes"), is derived from the Ancient Greek words makros, meaning "long", or "large", and ops, meaning "eyes".
Genetic evidence suggests that the age of the most recent common ancestor for Nothomyrmecia and Myrmecia is approximately 74 million years old, giving a likely origin in the Cretaceous. There are two hypotheses of the internal phylogeny of Nothomyrmecia: subfamily Formicinae is more closely related to Nothomyrmecia than it is to Myrmecia, evolving from Nothomyrmecia-like ancestors. Alternatively, Nothomyrmecia and Aneuretinae may have shared a common ancestor; the two most likely separated from each other, and the first formicines evolved from the Aneuretinae instead. Currently, scientists agree that Nothomyrmecia most likely evolved from ancestors to the Ponerinae.
Nests are found in degraded limestone soil with Callitris trees present.
Age caste polyethism does not occur in Nothomyrmecia, where the younger workers act as nurses and tend to the brood and the older workers go out and forage. The only ant known other than Nothomyrmecia which does not exhibit age caste polyethism is Stigmatomma pallipes. Workers are strictly nocturnality, and only emerge from their nests on cold nights. They are most active at temperatures of , and are much more difficult to locate on warmer nights. Workers are possibly most active when it is cold because at these times they encounter fewer and less aggressive competitors, including other more dominant diurnal ant species that are sometimes found foraging during warm nights. Cold temperatures may also hamper the escape of prey items, so increasing the ants' hunting success. Unless a forager has captured prey, workers stay on trees for the remainder of the night until dawn, possibly relying on sunlight to navigate back to their nest. There is no evidence that they use chemical trails when foraging; instead, workers rely on visual cues to navigate around. Chemical markers may play an important role in recognising nest entrances. The ants are solitary foragers. Waste material, such as dead nestmates, cocoon shells, and food remnants, are disposed of far away from the nest.
Workers from different Nothomyrmecia colonies are not antagonistic towards one another, so they can forage together on a single tree, and they attack if an outsider tries to enter an underground colony. Ants such as Carpenter ant and Iridomyrmex may pose a threat to foragers or to a colony if they try to enter; foraging workers that encounter Iridomyrmex ants are vigorously attacked and killed. Nothomyrmecia workers counter this by secreting alarm from the mandibular gland and Dufour's gland. Foraging workers also engage in alternative methods to protect themselves from predators. Adopting a posture by opening the jaws in a threatening stance or deliberately falling onto the ground and remaining motionless until the threat subsides are two known methods. With that said, Nothomyrmecia is a timid and shy species that retreats if exposed.
Eggs are not seen in nests from April to September. They are laid by late December and develop into adults by mid-February; pupation does not occur until March. Nothomyrmecia is univoltine, meaning that the queen produces a single generation of eggs per season, and it sometimes may take as many as 12 months for an egg to develop into an adult. Adults are defined as either juveniles or post-juveniles: juveniles are too young (perhaps several months old) to have experienced overwintering whereas post-juveniles have. The pupae generally overwinter and begin to hatch by the time a new generation of eggs is laid. Workers are capable of laying reproductive eggs; it is not known if these develop into males, females or both. This uncertainty results from the suggestion that, because some colonies have been shown to have high levels of genetic diversity, worker ants could be inseminated by males and act as supplementary reproductives. Eggs are scattered among the nest, whereas the larvae and pupae are set apart from each other in groups. The larvae are capable of crawling around the nest. When the larvae are ready to spin their cocoons, they swell up and are later buried by workers in the ground to allow cocoon formation. Small non-aggressive workers that act as nurses provide assistance for newborns to hatch from their cocoons. At maturity, a nest may only contain 50 to 100 adults. In some nests, colony founding can occur within a colony itself: when a queen dies, the colony may be taken over by one of her daughters, or it may adopt a newly mated queen, restricting reproduction among workers; this method of founding extends the lifespan of the colony almost indefinitely.
Suspected anthropogenic threats that can significantly affect Nothomyrmecia include habitat destruction and fragmentation by railway lines, roads and wheat fields. In the town of Ceduna, west of Poochera, local populations of the ant were almost eliminated after the area was bulldozed and burned during the installation of an underground telephone line, although nearby sites had larger populations than those found in the destroyed site. Colonies may not survive tree-clearing, as they depend on overhead canopies to navigate. Wildfire are another major threat to the survival of Nothomyrmecia, potentially destroying valuable food sources, including the trees they forage on, and reducing the population of a colony. These ants may have recovered from previous bushfires, but larger, more frequent fires may devastate the population. Nothomyrmecia ants can be safe from fires if they remain inside their nests. Climate change could be a threat to their survival, as they depend on cold temperatures to forage and collect food. An increase in the temperature will prevent workers from foraging, and very few areas would be suitable for the species to live in. The cold winds blowing off the Southern Ocean allow Nothomyrmecia to benefit from the cool temperatures they need for night-time foraging, so an increase in sea temperature could also potentially threaten it.
Conservationists suggest that conducting surveys, maintaining known populations through habitat protection and fighting climate change may ensure the survival of Nothomyrmecia. They also advocate protection of remaining mallee habitat from degradation, and for management actions to improve tree and understorey structure. Because most known populations are found outside protected areas in vegetation alongside roads, a species management plan is required to identify other key actions, including making local councils aware of the presence, conservation status and habitat requirement of Nothomyrmecia. This could result in future land use and management being decided more appropriately at the local level. Not all colonies are found in unprotected areas; some have been discovered in the Lake Gilles Conservation Park and the Chadinga Conservation Reserve. More research is needed to know the true extent of the ant's geographical distribution.
Description
Taxonomy
Discovery
Naming
Genetics and phylogeny
Distribution and habitat
Behaviour and ecology
Foraging, diet and predators
Life cycle and reproduction
Relationship with humans
Conservation
Significance
Notes
Cited literature
External links
|
|